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Abstract. We present a Monte Carlo study of the two-componghinodel on the simple cubic

lattice in three dimensions. By suitable tuning of the coupling constamte eliminate leading-

order corrections to scaling. High-statistics simulations using finite-size scaling techniques yield
v = 0.67233)[8] andn = 0.0381(2)[2], where the statistical and systematical errors are given

in the first and second bracket, respectively. These results are more precise than any previous
theoretical estimate of the critical exponents for theX8D universality class.

1. Introduction

The 3D XY universality class is unique in the respect that experimental estimates for critical
exponents are more precise than any theoretical estimate. These experiments are performed
in the neighbourhood of the super-fluid transitiorfdie. The specific heat or the super-fluid
density is measured as a function of the temperature [1-3].

In the present study we try to close the gap between theory and experiment by a high-
statistics Monte Carlo simulation of the two-compongfitor Landau—Ginzburg) model on
a 3D simple cubic lattice. The action is given by

S:Z{_ZKZ(ZX'$X+/1+(EE+A((Z§—1)2} 1)
x I

where the field variablej,, is a vector with two real components ane= (x1, x2, x3), where

x; is an integer, labels the lattice siteg.labels the directions and is a unit vector in the
w-direction. The Boltzmann factor is e&pS). Fori = 0 we get the Gaussian model on the
lattice. In the limith = co the XY model is recovered.

In addition to statistical errors Monte Carlo estimates of critical exponents are affected by
systematical errors that result from corrections to scaling. These systematical errors can be
reduced (in a finite-size scaling study) by increasing the linear sizef the lattices that are
simulated. A more elegant approach is to remove corrections by a suitable choice of the action.
Recently, it was demonstrated that leading-order corrections to scaling can be removed by a
suitable tuning of the coupling constanin the one-componet* theory on the lattice [4-6].
Leading-order corrections to scaling are proportion&hto (L~ in finite-size scaling), where
& is the correlation length and ~ 0.8.

The paper is organized as follows. In section 2 we discuss the observables that are
measured. In section 3 we explain the algorithm that has been used for the simulation and
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we summarize the simulation parameters. In section 4 the data are analysed. In section 5 our
results for exponents are compared with experimental and theoretical estimates given in the
literature. In section 6 we give our conclusions and an outlook.

2. The measured quantities

In the case of the one-component model the Binder cumulant turned out to be a good indicator
for corrections to scaling [6]. The Binder cumulant is defined by

((Mm?)?)
U= )
where
- 1 >
m = V E O (3)

is the magnetization per lattice site of a given configuration. The voluriteds L. In the
following we always consider systems with periodic boundary conditions. In [6] the Binder
cumulant was computed at a fixed value of the ratio of partition functiyyZ,. Z, is
the partition function for anti-periodic boundary conditions &l for periodic boundary
conditions. This ratio can also be computed for an arbitrary number of components. For a
simulation of theXY model see [7]. However, in the present paper we have replaged, by
the dimensionless ratig, /L, because the second-moment correlation lerigth, is easier
to implement asZ,/Z,. Note thatt /L, whereé is the exponential correlation length on a
strip of width L, was used in the pioneering work of Nightingale [8] on the phenomenological
renormalization group approach.

The second-moment correlation length is defined by

X/F -1 )1/2

wa = | 20— 4
Sond <4sir12(n/L) )

where the magnetic susceptibility is given by
x = V(m?) (5)

and

1 .27rx1 - 2

(%))

is the Fourier transform of the correlation function at minimal momentum. In the simulation
we averaged over all three directions to reduce the statistical error. Note that in the following
&2, IS always evaluated at a finite valuebfand not for the thermodynamic limit.

We performed some simulations of the one-component model to corapard. and
Z,/Z,. We found that the physical as well as statistical propertiés,@f L andZ,/Z, are
similar.

In order to compute observables in the neighbourhood of the simulation parameter,
we computed the first two coefficients of the Taylor expansionik,. We always checked
that the errors made by the truncation of the Taylor series are much smaller than the statistical
errors of the quantities that were computed.
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3. The simulations

3.1. The Monte Carlo algorithm

We generalize the idea of Brower and Tamayo [9] to simulate the one-compghteory.

They used the Swendsen—Wang cluster algorithm [10] to update the sign of the.fiahd

order to obtain an ergodic update they supplement the cluster update with a Metropolis update
that also allows one to update the modulus of the field. In our case we only use the single-
cluster algorithm [11] to update the direction of the field. The modulus is updated with the
Metropolis algorithm. Let us briefly recall the steps of the single-cluster algorithm applied to
the two-componenp* theory. First, a directiof is chosen

ny = sin2r ) ny = cog270) (7

whered is a random number that is uniformly distributed in I9. Next a site of the lattice is
picked randomly as the seed of the cluster. The cluster is built recursively. New sites enter the
cluster when they freeze onto their neighbours that are already members of the cluster. The
freezing probability isp; = 1 — p, with

pa = min[1, exp(—4c i - $.)Gi - ,))]- ®)
The fields of all sites in the cluster are reflected
¢ = g, — 23t - Go)ii. ©9)

The modulus of is changed with a local Metropolis update. A proposal for the field is
generated by

¢, = ¢ix+s(r; —0.5) (10)

fori = 1, 2, where; isarandom number that is uniformly distributed in19. The acceptance
probability is given by

A = min[1, exp(S — $)] (11)

whereS andS$’ are the action for the original field and the proposal, respectively. We found
that a step-size = 2 yields an acceptance rate of about 50%. In one sweep we go through the
lattice in lexicographic order.

3.2. The simulation parameters

The program is written irC. As a pseudo random number generator we used our own
implementation ofz05CAF of the NAG-library. As a test of the correctness of the program
and of the quality of the random number generator we compared Monte Carlo results for
A = 0 with exact results and Monte Carlo results for snfaillvith high-temperature series
expansions [12]. The program and the random number generator passed these tests. Note that
linear congruential pseudo-random number generators with periods much smaller than that of
GO5CAF have passed tests that apply the single cluster and Metropolis algorithm to the 2D and
3D Ising model (see e.g. [13]).

We performed simulations at a large range. @hlues and linear lattice sizés In table 1
we give an overview of the simulation parameters and the number of measurements for each
set of simulation parameters. Most of our simulations were performed on 200 MHz Pentium
Pro PCs running undérinux.

For each measurement we performed one sweep with the Metropolis algorithm and
single cluster updates. The number of cluster updates was chosen as roughly proportional to
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Table 1. Summary of simulation parameters. In the first column we give the valug iof the
second column the linear lattice sizend in the third column the number of measurements divided

by 3 x 10°.
A L Stat/3x 10°
0.5 8,16 17,5
1.0 6, 8,10, 12, 14, 16, 18, 20, 22, 24 50, 10, 10, 10, 10, 10, 10, 10, 10, 11
15 8,16 13,6
1.7 8,12,24 15,10, 2.5
1.8 3,4,5,6,7,8,9, 10,12, 16 20, 67, 67, 20, 40, 15, 45, 30, 15, 8
1.9 3,4,5,6,7,8,12,16, 20, 24 33, 27, 20, 20, 15, 20, 10, 10, 11, 10
1.98 8,12, 16, 20, 24 20,15, 10, 11, 15
2.0 3,4,5,6,7,8,9,10, 11, 12, 13, 14 133, 67, 67, 50, 25, 20, 24, 20, 20, 20, 20, 30
15, 16, 18, 20, 22, 24, 26, 28, 32, 40, 48 20, 20, 25, 25, 25, 20, 16, 15, 22, 10, 10
2.2 3,4,5,6,7,8,9,10, 12, 16, 24 133, 67, 67, 50, 40, 15, 45, 30, 15, 8,5
4.0 6,7,8,9,10, 11,12, 14, 16, 18, 20, 22, 24 50, 20, 10, 10, 10, 9, 10, 10, 10, 10, 10, 10, 10

the linear lattice size.. For some lattice sizes we searched for th&alue that gives the
optimal performance of the algorithm. Fbr= 48 we foundn = 40 as optimal.

The total amount of CPU-time used for the simulations was about 3 years on the 200 MHz
Pentium Pro PCs.

4. Analysing the data

4.1. The Binder cumulant and corrections to scaling

We analysed the Binder cumulantgat, /L = 0.5927 fixed. This means that first (at fixaj
k¢ is computed for tha§z,./L = 0.5927. Then, the Binder cumulant is computed at In

the following we denote the Binder cumulantsat,/L = 0.5927 byU. From preliminary
simulations we know that,;/L = 0.5927 is a good approximation of

Eona/L" = L'Enoo &2na/ L. - (12)

The advantage of this approach is that we need not search. fand that, due to cross
correlations, the statistical error ofis smaller than that of/|, (see e.g. [14]).
For largeL, U approaches a universal constaft Leading-order corrections are given

by
U(L,A\) =U*+ci(ML™. (13)

We fitted the data for all values afsimultaneously with this ansatz. The free parameters of
this fit areU*, w andc1 (1) for each value of..

The results for various minimal lattice sizés,;,, that have been included in the fit are
summarized in table 2. The values §o/d.o.f. stay rather large ds,,, is increased. We could
not pinpoint the particular problem that caused this effect. On the other hand, the result for
the exponend is quite stable a,,;, is varied. As our final result for the correction to scaling
exponentwe quote = 0.79(2). Itis hard to give reliable estimates for the systematical errors.
The fact that the result fap stays almost constant starting fraiy,;, = 6 at least indicates
that these errors should be small.

For L,;, = 12, 14 and 16 we give the results for()) in table 3. Linear interpolation
of the result forc; atA = 2.0 and 2.2 yields.,,, = 2.046(9), 2.086(9) and 2101(10) for
Luin = 12, 14 and 16, respectively. Whexg, is defined byc(x,,;) = 0. There is still an
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Table 2. Fit results for the Binder cumulant evaluate&kat; /L = 0.5927 fixed. The ansatz is
given in equation (13). We give results for various minimal lattice sizgs, w is the correction
to the scaling exponent.

Lyin  x2d.of. U* ®
6 5.42 1.24357(3) 0.786(6)
8 234 1.24324(4) 0.775(6)
10 215 1.24311(5) 0.788(10)
12 180 1.24297(6) 0.782(14)
14 175 1.24279(8)  0.790(20)
16 1.86 1.24274(9) 0.819(31)

Table 3. The correction to scaling amplitude(x) as a function of. from fits with ansatz (13).
We give the results for three valuesbyf,;,, = 12, 14 and 16.

Lin

A 12 14 16

0.5  0.2152(83) 0.2220(122) 0.2408(207)
1.0 0.0956(37) 0.0999(59)  0.1094(101)
15  0.0398(21) 0.0424(28)  0.0464(43)
1.7 0.0229(12) 0.0280(32)  0.0314(42)
1.8 0.0153(8) 0.0186(17)  0.0207(23)
1.9 0.0077(8)  0.0099(11)  0.0114(15)
1.98 0.0038(7)  0.0067(11)  0.0079(14)
2.0 0.0022(6)  0.0043(9) 0.0057(13)
2.2 —0.0074(7) —0.0057(13) —0.0056(16)

40 —0.0604(24) —0.0601(37) —0.0649(63)

increase in,,, visible asL,,;, increases. We quote,,, = 2.10(1)[5] as our final result. As
a rough estimate of systematical errors we give (in the square brackets) the difference of the
result forL,,;, = 12 and 16.

Following [6] we tried to fit our data with the extended ansatz

U(L, %) =U*+c1(A)L™ + cocr (L)L, (14)

However, it turned out that we had too few data with a large enough differéhee{/*, to
resolvecs.
Finally, we fitted the difference of the Binder cumulant.at 2.0 and 2.2 with the ansatz

UL, »=20)—U(L,»=22)=cL™. (15)

The results are given in table 4. It turns out thdfd.o.f. is already of the order of one for
the very smallL,,;, = 3. Also, the value obtained fas with this smallL,,;, is consistent
with the result obtained above. Hence, corrections beyorftildepend very little ork and
are cancelled iV (L, » = 2.0) — U(L, » = 2.2). The same observation holds in the case of
the one-component model [6].

4.2. The critical linex,. (1)

As an approximation of the critical. we takex  whereé,,;/L = 0.5927. In table 5 we give
the result for the largest lattice size available for each valuglodt has been studied. Leading
corrections are given by

Kf—Ke =aL YV +pL Vo4 (16)
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Table 4. Fitting the difference ot/ atA = 2.0 and 2.2 with ansatz (15).

Luyin c1(2.0) —2(2.2)  x%d.of.
3 0.787(18) 0.0106(3) 0.98
4 0.780(31) 0.0104(5) 1.09
5 0.794(43)  0.0107(9) 1.21

Table 5. Estimates of the criticat,. for all values ofi that have been simulated. The value for
A = oo has been taken from[14]. The systematical errors are given in square brackets and statistical
errors in round brackets.

A L 2Kk

0 0.33...

05 16 0.4828[6]

1.0 24 0.50754[7]

15 16 0.51197[7]

1.7 24 0511602

1.8 16 0.51115[2]

1.9 24 0.510576(2)[7]
1.98 24 0.510049(1)[7]
2.0 48 0.5099049(6)[9]
22 24 0.508344(2)[4]
40 24 0.49243[5]

00 0.454 165(4)

Table 6. Fits of the magnetic susceptibility &f,,/L = 0.5927 fixed with ansatz (17).

Lmin d n Xz/d'o'f'

14 1.25629(20) 0.03667(5)  10.28
24 1.25957(50) 0.03742(11)  2.91
26 1.26067(61) 0.03766(14)  0.70
28 1.26117(75) 0.03777(17)  0.40

The constant: should be very small since we have chogen, /L = 0.5927 as a good
approximation o€,,,/L*. The value ob depends on and vanishes at,,,. Nevertheless, we
pessimistically assume that errors decay with/’. Systematical errors are then computed

by comparinge; at L with ks at L/2. These errors are given in square brackets. Whenever
statistical errors reach a similar size as the systematical ones they are quoted in addition, in
round brackets.

4.3. The exponent

We computed the exponentfrom the finite-size behaviour of the magnetic susceptibility,
X, at eitheré,,; /L = 0.5927 orU = 1.243 fixed. We denote the magnetic susceptibility at
&,q/L or U fixed by . It scales as

¥ =dL?™, (17)

First we analysed our data far= 2.0 which is close ta.,,, and where we have accumulated
the most data. Results for fixég,; /L are given in table 6 and for fixed in table 7.

In both cases rather lards,;, are needed to reach ar/d.o.f. value close to one. Since
x at fixed&,,4/L has a smaller statistical error thgnat fixed U, the statistical error ofj is
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Table 7. Fits of the magnetic susceptibility & = 1.243 fixed with ansatz (17).

Lpin d n X2/ d.o.f.

14 1.2598(6)  0.03740(16) 2.27
22 1.2628(13) 0.03811(31) 1.20
24 1.2644(16) 0.03845(38) 0.83
26 1.2625(20) 0.03804(46) 0.29

Table 8. Fits of the magnetic susceptibility &t,,/L = 0.5927 fixed with the extended ansatz
(18).

Lyin ¢ d n x2/d.o.f.

6 —0.3602(40) 1.26187(21) 0.03784(5) 2.07
7 —0.3809(68) 1.26246(26) 0.03798(6)  1.33
8 —0.395(11) 1.26280(34) 0.03805(8)  1.17
10 —0.381(18)  1.26254(43) 0.03800(10) 1.06
12 —0.393(32) 1.26275(62) 0.03804(14) 1.21
14  —0.405(43) 1.26289(73) 0.03807(16) 1.40
16 —0.436(72)  1.26330(99) 0.03815(21) 1.32

Table 9. Fits of the magnetic susceptibility &t = 1.243 fixed with the extended ansatz (18).

Lyin ¢ d n xz/d.o.f.

4 —0464(4) 1.2651(4) 0.03845(11) 3.27
6 —0525(12) 1.2681(6) 0.03917(16) 0.76
8 —0.526(30) 1.2682(10) 0.03918(23) 0.85
10 —0.553(55) 1.2688(14) 0.03931(31) 0.96
12 —0.574(90) 1.2691(18) 0.03937(40) 1.05
14 —0.47(13) 1.2676(22) 0.03907(49) 1.17
16 —0.24(23)  1.2649(32) 0.03851(67) 1.27

also smaller for fixed,,,/L than for fixedU .
Because we had to go to lards,;, with the simple ansatz (17) we added an analytic
correction

¥ =c+dL>. (18)

Note also that corrections that decay like* with x ~ 2 are effectively parametrized by
this ansatz. Results for fits with this ansatz are given in table 8 for fixgd L and for
fixed U in table 9. We see that a smalf/d.o.f. is already reached fdt,,;, = 7 and 6,
respectively. Despite the fact thatd/d.o.f. of the order of one is reached, the results;for
do not match within statistical errors. This is a reminder that a spfali.o.f. does notimply
that systematical errors are of the same size as the statistical ones.

Since the statistical error with fixéd,; / L is smaller we take our final result from these fits.
In order to estimate systematical errors we compare results of fits with the k3Rge. ...
andL!, = 2Ly, L., = 2L Then the error due td~2? (which we assume to be
the leading corrections beyorid®) corrections in the second interval should %)@f the
difference of the two results (up to a difference in the distribution of the data with the interval).
As our final estimate we take the fit result fraty,;, = 14 andL,,,, = 48. For comparison
we fitted withL,,;, = 7 andL,,,. = 24. For this interval we gei = 0.0380Q13). Hence
the systematical error froth=2 corrections should be smaller thai®00 12 (taking statistical
errors into account).
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Finally, we checked for systematical errors due to residual leading-order corrections to
scaling at. = 2.0. For this purpose we fitted our data fo= 1.0 and 4.0, also witli.,,,;, = 14
and ansatz (18). We get= 0.037513) and 0.0373(13), respectively. Taking into account
the statistical errors we find that
Alleff
Aci(2)

From the previous section we know that the coefficien®.0) should be smaller than
0.007 (taking the fit result fok.,,;, = 16 plus the statistical error). Therefore, the systematical
error in our final estimate of due to residual leading-order corrections should be smaller than
0.00013. As a check we repeated the error analysis using a method similar to [5] and came
up with a comparable estimate.

As a final estimate fon we take the result from fitting the magnetic susceptibility at fixed
&2,4/L with ansatz (18) and.,,,;, = 14

n = 0.0381(2)[2]. (20)

The estimate of the systematical error is given in the second bracket. It covers rdsidual
corrections and higher-order corrections.

<0.018 (19)

4.4. The exponent

We computed the derivate of the Binder cumuldnt,with respect toc at the fixed value of
the Binder cumulanty = 1.243, and at the fixed value &f,,/L = 0.5927. These quantities
behave as
U _ . (21)
oK
Results of the fits are summarized in tables 10 and 11 for fisgg/ L and for fixedU,
respectively. Theg?/d.o.f. becomes of the order of one starting frdmp;,, = 8 and 7,
respectively. The statistical errors are slightly smaller in the case of fixed

As in the case of the exponentin addition to the statistical error we expect systematical
errors due to the fact that the coefficientlof® corrections does not vanish exactly and due
to sub-leading.~2 corrections.

In order to estimate these errors we proceed as in the previous section.

As our final result we take the fit with,,;, = 14 andL,,,, = 48 of % at fixedU. In
order to estimaté. —2 corrections we fitted the data in the interda);, = 7 andL,,., = 24.
For these lattice sizes we obtain= 0.671X2). Hence the estimate for A=2 error is
0.0011%(5)/3 ~ 0.0005.

Table 10. Fits of % até&y,, /L fixed with ansatz (21).

Lipin c/2 v Xz/d.O.f.

6 —0.5542(5) 0.6709(1) 3.82
7 —05565(6) 0.6715(2) 1.76
8 —05578(7) 0.6719(2) 1.02

10 —-0.5586(9) 0.6721(2) 0.96

12 —0.5595(11) 0.6723(3) 0.80

14 —0.5608(13) 0.6727(4) 0.65

16 —0.5620(18) 0.6729(5) 0.69

20 —0.5610(24) 0.6727(6) 0.63

24  —05632(36) 0.6732(9) 0.50
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Table 11. Fits of 2 at fixedU with ansatz (21).

Lyin ¢/2 v x?/d.o.f.

6 —05551(4) 0.6712(1) 2.07
7  —05564(5) 0.6716(1) 1.19
8 —05572(6) 0.6718(2) 0.80
10 —05577(7) 0.6719(2) 0.73
12 —0.5583(9) 0.6721(3) 0.62
14 —0.5593(11) 0.6723(3) 0.51
16 —0.5601(15) 0.6725(4) 0.55
20 —05592(21) 0.6723(5) 0.48
24  —05610(31) 0.6727(7) 0.30

In order to estimate the error due to residlat corrections we fitted our data far= 1.0
and 4.0. FronmL,,;, = 14 we obtainv = 0.670611) for », = 1.0 andv = 0.675810) for
A =4.0. Hence
Avess
Aci (D)
From the previous section we know thgt2.0) ~ 0.007. Therefore, the estimate of the

systematical error im is 0.04 x 0.007 ~ 0.0003.
We arrive at our final estimate

v = 0.67233)[8] (23)

< 0.04. (22)

where the statistical error is given in the first bracket and the systematical error that is given in
the second bracket covets? and residual. — corrections.

5. Comparison with the literature

In table 12 we give, for comparison, recent results for critical exponents. Critical exponents
for the XY -universality class were calculated using the high-temperature series expansions,
thee-expansion, perturbation theory in three dimension and Monte Carlo simulations.

The Monte Carlo simulations [14—17] are performed for the two-compaoki&ninodel,
whichisthelr = oo limit of the model discussed in the present paper. The three-comp&ient
model is studied in [18]. In this model the field variable is a three-component unit vector and
the coupling of the third component vanishes. All these Monte Carlo studies use a simple cubic
lattice. The high-temperature series expansion of [20] is performed for the two-component
XY model on the simple cubic and on the body-centred cubic lattice.

Our result forv is consistent, within error bars, with (almost) all other theoretical results
given in table 12. The result of the Monte Carlo study [16] seems to be a little too small in
magnitude. Our error bar is smaller than that of all previous estimates. Our estimatis for
consistent with the other theoretical estimates except with some of the Monte Carlo results.
The values of [15, 16] are too small compared with our present estimate. Note that in these
studies no careful check of systematical errors due to corrections to scaling was performed.
On the other hand, the result of [14], which takes into acc@urt corrections, is larger than
our result by two standard deviations.

In contrast to the one-component case [6] our result for the correction to scaling exponent
w is consistent with that obtained with field theoretic methods.
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Table 12. Recent results for critical exponents obtained with Monte Carlo simulations (MC),
e-expansion, perturbation theory in three dimensions (3D, PT) and high-temperature (HT) series
expansions. When only andy are given in the reference we computgdith the scaling law.
These cases are indicatedhyln [1] a result fore and in [17] a result for/v are given. In the

table these results are convertedtosing the scaling relatiom = 2 — dv. For a discussion see

the text.

Reference Method v n 13}
Presentwork  MC 0.6723(3)[8] 0.0381(2)[2] 0.79(2)
[15] MC 0.670(2) 0025(7)*

[16] MC 0.662(7) 0.026(6)

[17] MC 0.6724(17)

[14] MC 0.6721(13)  0.042(2)

[18] mMC 0.669 3(58) 0.035(5)

[19] 3D,PT 0.6703(15)  0.0354(25)  0.789(11)
[19] €, bc 0.6680(35) 0.0380(50) 0.802(18)
[19] €, free 0.671 0.0370 0.802(18)
[20] HT 0.674(2) 0039(7)*

[1] “He 0.67095(13)

[2] “He 0.6705(6)

[3] “He 0.6708(4)

Experimental results for the exponanhave been obtained for thetransition of*He.
These results have smaller error bars than our Monte Carlo result. The experimental results
are all smaller then our value but the error bars still touch.

6. Conclusion and outlook

In this paper we have considerably improved the accuracy of the theoretical estimate of
of the 3D XY universality class. In particular, in addition to the statistical error we give a
careful estimate of systematical errors that are caused by corrections to scaling. Our value,
v = 0.67233)[8], is consistent with other theoretical estimates. However, it is larger than
the experimental results obtained from théransition of*He [1-3] that give values from
0.6704 to 06709 with an error in the last digit. It would be interesting to further improve the
theoretical estimate to the claimed accuracy of the experimental results. This could be achieved
by simulating at our best estimate fog,, = 2.1 and using linear lattice sizes roughly twice
as large as in the present study to reduce the effect of sub-leading corrections. At a sustained
statistical accuracy this would require about 10 years of CPU-time on a modern PC.

In addition to critical exponents amplitude ratios are universal and have been
experimentally determined for thetransition of*He. For example, the specific heat behaves,
in the neighbourhood of the phase transition, as

C=ALlt|*Q+Dyt|’ +Ect) + B (24)

wheret = (T — T.)/ T, is the reduced temperature. The constantsD.., E. andB depend
on the system that is considered. The subsectiphdicates the low- and high-temperature
phase. However, renormalization group predicts the ratipA_ to be universal. Setting
A = Aqy leads toD, = 0 which greatly simplifies the determination 4f/A_ in a Monte
Carlo simulation. For a Monte Carlo determinatiomaf/ A _ based on th&Y model see [17].
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