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Abstract. We present a Monte Carlo study of the two-componentφ4 model on the simple cubic
lattice in three dimensions. By suitable tuning of the coupling constant,λ, we eliminate leading-
order corrections to scaling. High-statistics simulations using finite-size scaling techniques yield
ν = 0.6723(3)[8] andη = 0.0381(2)[2], where the statistical and systematical errors are given
in the first and second bracket, respectively. These results are more precise than any previous
theoretical estimate of the critical exponents for the 3DXY universality class.

1. Introduction

The 3DXY universality class is unique in the respect that experimental estimates for critical
exponents are more precise than any theoretical estimate. These experiments are performed
in the neighbourhood of the super-fluid transition of4He. The specific heat or the super-fluid
density is measured as a function of the temperature [1–3].

In the present study we try to close the gap between theory and experiment by a high-
statistics Monte Carlo simulation of the two-componentφ4 (or Landau–Ginzburg) model on
a 3D simple cubic lattice. The action is given by

S =
∑
x

{
− 2κ

∑
µ

Eφx · Eφx+µ̂ + Eφ2
x + λ( Eφ2

x − 1)2
}

(1)

where the field variable,Eφx , is a vector with two real components andx = (x1, x2, x3), where
xi is an integer, labels the lattice sites.µ labels the directions and̂µ is a unit vector in the
µ-direction. The Boltzmann factor is exp(−S). Forλ = 0 we get the Gaussian model on the
lattice. In the limitλ = ∞ theXY model is recovered.

In addition to statistical errors Monte Carlo estimates of critical exponents are affected by
systematical errors that result from corrections to scaling. These systematical errors can be
reduced (in a finite-size scaling study) by increasing the linear size,L, of the lattices that are
simulated. A more elegant approach is to remove corrections by a suitable choice of the action.
Recently, it was demonstrated that leading-order corrections to scaling can be removed by a
suitable tuning of the coupling constantλ in the one-componentφ4 theory on the lattice [4–6].
Leading-order corrections to scaling are proportional toξ−ω (L−ω in finite-size scaling), where
ξ is the correlation length andω ≈ 0.8.

The paper is organized as follows. In section 2 we discuss the observables that are
measured. In section 3 we explain the algorithm that has been used for the simulation and
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we summarize the simulation parameters. In section 4 the data are analysed. In section 5 our
results for exponents are compared with experimental and theoretical estimates given in the
literature. In section 6 we give our conclusions and an outlook.

2. The measured quantities

In the case of the one-component model the Binder cumulant turned out to be a good indicator
for corrections to scaling [6]. The Binder cumulant is defined by

U = 〈( Em
2)2〉

〈 Em2〉2 (2)

where

Em = 1

V

∑
x

Eφx (3)

is the magnetization per lattice site of a given configuration. The volume isV = L3. In the
following we always consider systems with periodic boundary conditions. In [6] the Binder
cumulant was computed at a fixed value of the ratio of partition functionsZa/Zp. Za is
the partition function for anti-periodic boundary conditions andZp for periodic boundary
conditions. This ratio can also be computed for an arbitrary number of components. For a
simulation of theXY model see [7]. However, in the present paper we have replacedZa/Zp by
the dimensionless ratioξ2nd/L, because the second-moment correlation length,ξ2nd , is easier
to implement asZa/Zp. Note thatξ/L, whereξ is the exponential correlation length on a
strip of widthL, was used in the pioneering work of Nightingale [8] on the phenomenological
renormalization group approach.

The second-moment correlation length is defined by

ξ2nd =
(
χ/F − 1

4 sin2(π/L)

)1/2

(4)

where the magnetic susceptibility is given by

χ = V 〈 Em2〉 (5)

and

F = 1

V

〈∣∣∣∣∑
x

exp

(
i
2πx1

L

)
Eφx
∣∣∣∣2〉 (6)

is the Fourier transform of the correlation function at minimal momentum. In the simulation
we averaged over all three directions to reduce the statistical error. Note that in the following
ξ2nd is always evaluated at a finite value ofL and not for the thermodynamic limit.

We performed some simulations of the one-component model to compareξ2nd/L and
Za/Zp. We found that the physical as well as statistical properties ofξ2nd/L andZa/Zp are
similar.

In order to compute observables in the neighbourhood of the simulation parameter,κs ,
we computed the first two coefficients of the Taylor expansion inκ − κs . We always checked
that the errors made by the truncation of the Taylor series are much smaller than the statistical
errors of the quantities that were computed.



High-precision Monte Carlo study of the 3DXY -universality class 6363

3. The simulations

3.1. The Monte Carlo algorithm

We generalize the idea of Brower and Tamayo [9] to simulate the one-componentφ4 theory.
They used the Swendsen–Wang cluster algorithm [10] to update the sign of the fieldφ. In
order to obtain an ergodic update they supplement the cluster update with a Metropolis update
that also allows one to update the modulus of the field. In our case we only use the single-
cluster algorithm [11] to update the direction of the field. The modulus is updated with the
Metropolis algorithm. Let us briefly recall the steps of the single-cluster algorithm applied to
the two-componentφ4 theory. First, a directionEn is chosen

n1 = sin(2πθ) n2 = cos(2πθ) (7)

whereθ is a random number that is uniformly distributed in [0, 1). Next a site of the lattice is
picked randomly as the seed of the cluster. The cluster is built recursively. New sites enter the
cluster when they freeze onto their neighbours that are already members of the cluster. The
freezing probability ispf = 1− pd with

pd = min[1, exp(−4κ(En · Eφx)(En · Eφy))]. (8)

The fields of all sites in the cluster are reflected

Eφ′x = Eφx − 2(En · Eφx)En. (9)

The modulus ofEφ is changed with a local Metropolis update. A proposal for the field is
generated by

φ′i,x = φi,x + s(ri − 0.5) (10)

for i = 1, 2, whereri is a random number that is uniformly distributed in [0, 1). The acceptance
probability is given by

A = min[1, exp(S − S ′)] (11)

whereS andS ′ are the action for the original field and the proposal, respectively. We found
that a step-sizes = 2 yields an acceptance rate of about 50%. In one sweep we go through the
lattice in lexicographic order.

3.2. The simulation parameters

The program is written inC. As a pseudo random number generator we used our own
implementation ofG05CAF of the NAG-library. As a test of the correctness of the program
and of the quality of the random number generator we compared Monte Carlo results for
λ = 0 with exact results and Monte Carlo results for smallβ with high-temperature series
expansions [12]. The program and the random number generator passed these tests. Note that
linear congruential pseudo-random number generators with periods much smaller than that of
G05CAF have passed tests that apply the single cluster and Metropolis algorithm to the 2D and
3D Ising model (see e.g. [13]).

We performed simulations at a large range ofλ values and linear lattice sizesL. In table 1
we give an overview of the simulation parameters and the number of measurements for each
set of simulation parameters. Most of our simulations were performed on 200 MHz Pentium
Pro PCs running underLinux.

For each measurement we performed one sweep with the Metropolis algorithm andm

single cluster updates. The number of cluster updates was chosen as roughly proportional to
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Table 1. Summary of simulation parameters. In the first column we give the value ofλ, in the
second column the linear lattice sizeL and in the third column the number of measurements divided
by 3× 106.

λ L Stat/3× 106

0.5 8, 16 17, 5
1.0 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 50, 10, 10, 10, 10, 10, 10, 10, 10, 11
1.5 8, 16 13, 6
1.7 8, 12, 24 15, 10, 2.5
1.8 3, 4, 5, 6, 7, 8, 9, 10, 12, 16 20, 67, 67, 20, 40, 15, 45, 30, 15, 8
1.9 3, 4, 5, 6, 7, 8, 12, 16, 20, 24 33, 27, 20, 20, 15, 20, 10, 10, 11, 10
1.98 8, 12, 16, 20, 24 20, 15, 10, 11, 15
2.0 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 133, 67, 67, 50, 25, 20, 24, 20, 20, 20, 20, 30

15, 16, 18, 20, 22, 24, 26, 28, 32, 40, 48 20, 20, 25, 25, 25, 20, 16, 15, 22, 10, 10
2.2 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 24 133, 67, 67, 50, 40, 15, 45, 30, 15, 8, 5
4.0 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24 50, 20, 10, 10, 10, 9, 10, 10, 10, 10, 10, 10, 10

the linear lattice sizeL. For some lattice sizes we searched for them value that gives the
optimal performance of the algorithm. ForL = 48 we foundm = 40 as optimal.

The total amount of CPU-time used for the simulations was about 3 years on the 200 MHz
Pentium Pro PCs.

4. Analysing the data

4.1. The Binder cumulant and corrections to scaling

We analysed the Binder cumulant atξ2nd/L = 0.5927 fixed. This means that first (at fixedλ)
κf is computed for thatξ2nd/L = 0.5927. Then, the Binder cumulant is computed atκf . In
the following we denote the Binder cumulant atξ2nd/L = 0.5927 byŪ . From preliminary
simulations we know thatξ2nd/L = 0.5927 is a good approximation of

ξ2nd/L
∗ = lim

L→∞
ξ2nd/L|κc . (12)

The advantage of this approach is that we need not search forκc and that, due to cross
correlations, the statistical error ofŪ is smaller than that ofU |κc (see e.g. [14]).

For largeL, Ū approaches a universal constantŪ ∗. Leading-order corrections are given
by

Ū (L, λ) = Ū ∗ + c1(λ)L
−ω. (13)

We fitted the data for all values ofλ simultaneously with this ansatz. The free parameters of
this fit areŪ ∗, ω andc1(λ) for each value ofλ.

The results for various minimal lattice sizesLmin that have been included in the fit are
summarized in table 2. The values forχ2/d.o.f. stay rather large asLmin is increased. We could
not pinpoint the particular problem that caused this effect. On the other hand, the result for
the exponentω is quite stable asLmin is varied. As our final result for the correction to scaling
exponent we quoteω = 0.79(2). It is hard to give reliable estimates for the systematical errors.
The fact that the result forω stays almost constant starting fromLmin = 6 at least indicates
that these errors should be small.

ForLmin = 12, 14 and 16 we give the results forc1(λ) in table 3. Linear interpolation
of the result forc1 at λ = 2.0 and 2.2 yieldsλopt = 2.046(9), 2.086(9) and 2.101(10) for
Lmin = 12, 14 and 16, respectively. Whereλopt is defined byc(λopt ) = 0. There is still an
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Table 2. Fit results for the Binder cumulant evaluated atξ2nd/L = 0.5927 fixed. The ansatz is
given in equation (13). We give results for various minimal lattice sizesLmin, ω is the correction
to the scaling exponent.

Lmin χ2/d.o.f. Ū∗ ω

6 5.42 1.243 57(3) 0.786(6)
8 2.34 1.243 24(4) 0.775(6)

10 2.15 1.243 11(5) 0.788(10)
12 1.80 1.242 97(6) 0.782(14)
14 1.75 1.242 79(8) 0.790(20)
16 1.86 1.242 74(9) 0.819(31)

Table 3. The correction to scaling amplitudec1(λ) as a function ofλ from fits with ansatz (13).
We give the results for three values ofLmin = 12, 14 and 16.

Lmin

λ 12 14 16

0.5 0.2152(83) 0.2220(122) 0.2408(207)
1.0 0.0956(37) 0.0999(59) 0.1094(101)
1.5 0.0398(21) 0.0424(28) 0.0464(43)
1.7 0.0229(12) 0.0280(32) 0.0314(42)
1.8 0.0153(8) 0.0186(17) 0.0207(23)
1.9 0.0077(8) 0.0099(11) 0.0114(15)
1.98 0.0038(7) 0.0067(11) 0.0079(14)
2.0 0.0022(6) 0.0043(9) 0.0057(13)
2.2 −0.0074(7) −0.0057(13) −0.0056(16)
4.0 −0.0604(24) −0.0601(37) −0.0649(63)

increase inλopt visible asLmin increases. We quoteλopt = 2.10(1)[5] as our final result. As
a rough estimate of systematical errors we give (in the square brackets) the difference of the
result forLmin = 12 and 16.

Following [6] we tried to fit our data with the extended ansatz

Ū (L, λ) = Ū∗ + c1(λ)L
−ω + c2c1(λ)

2L−2ω. (14)

However, it turned out that we had too few data with a large enough difference,Ū − Ū∗, to
resolvec2.

Finally, we fitted the difference of the Binder cumulant atλ = 2.0 and 2.2 with the ansatz

Ū (L, λ = 2.0)− Ū (L, λ = 2.2) = cL−ω. (15)

The results are given in table 4. It turns out thatχ2/d.o.f. is already of the order of one for
the very smallLmin = 3. Also, the value obtained forω with this smallLmin is consistent
with the result obtained above. Hence, corrections beyondL−ω depend very little onλ and
are cancelled in̄U(L, λ = 2.0)− Ū (L, λ = 2.2). The same observation holds in the case of
the one-component model [6].

4.2. The critical lineκc(λ)

As an approximation of the criticalκc we takeκf whereξ2nd/L = 0.5927. In table 5 we give
the result for the largest lattice size available for each value ofλ that has been studied. Leading
corrections are given by

κf − κc = aL−1/ν + bL−1/ν−ω + · · · . (16)
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Table 4. Fitting the difference ofŪ atλ = 2.0 and 2.2 with ansatz (15).

Lmin ω c1(2.0)− c2(2.2) χ2/d.o.f.

3 0.787(18) 0.0106(3) 0.98
4 0.780(31) 0.0104(5) 1.09
5 0.794(43) 0.0107(9) 1.21

Table 5. Estimates of the criticalκc for all values ofλ that have been simulated. The value for
λ = ∞ has been taken from [14]. The systematical errors are given in square brackets and statistical
errors in round brackets.

λ L 2 κc

0 0.33. . .
0.5 16 0.482 8[6]
1.0 24 0.507 54[7]
1.5 16 0.511 97[7]
1.7 24 0.511 60[2]
1.8 16 0.511 15[2]
1.9 24 0.510 576(2)[7]
1.98 24 0.510 049(1)[7]
2.0 48 0.509 9049(6)[9]
2.2 24 0.508 344(2)[4]
4.0 24 0.492 43[5]
∞ 0.454 165(4)

Table 6. Fits of the magnetic susceptibility atξ2nd/L = 0.5927 fixed with ansatz (17).

Lmin d η χ2/d.o.f.

14 1.256 29(20) 0.036 67(5) 10.28
24 1.259 57(50) 0.037 42(11) 2.91
26 1.260 67(61) 0.037 66(14) 0.70
28 1.261 17(75) 0.037 77(17) 0.40

The constanta should be very small since we have chosenξ2nd/L = 0.5927 as a good
approximation ofξ2nd/L

∗. The value ofb depends onλ and vanishes atλopt . Nevertheless, we
pessimistically assume that errors decay withL−1/ν . Systematical errors are then computed
by comparingκf atL with κf atL/2. These errors are given in square brackets. Whenever
statistical errors reach a similar size as the systematical ones they are quoted in addition, in
round brackets.

4.3. The exponentη

We computed the exponentη from the finite-size behaviour of the magnetic susceptibility,
χ , at eitherξ2nd/L = 0.5927 orU = 1.243 fixed. We denote the magnetic susceptibility at
ξ2nd/L orU fixed byχ̄ . It scales as

χ̄ = dL2−η. (17)

First we analysed our data forλ = 2.0 which is close toλopt and where we have accumulated
the most data. Results for fixedξ2nd/L are given in table 6 and for fixedU in table 7.

In both cases rather largeLmin are needed to reach anχ2/d.o.f. value close to one. Since
χ̄ at fixedξ2nd/L has a smaller statistical error thanχ̄ at fixedU , the statistical error ofη is
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Table 7. Fits of the magnetic susceptibility atU = 1.243 fixed with ansatz (17).

Lmin d η χ2/ d.o.f.

14 1.2598(6) 0.037 40(16) 2.27
22 1.2628(13) 0.038 11(31) 1.20
24 1.2644(16) 0.038 45(38) 0.83
26 1.2625(20) 0.038 04(46) 0.29

Table 8. Fits of the magnetic susceptibility atξ2nd/L = 0.5927 fixed with the extended ansatz
(18).

Lmin c d η χ2/d.o.f.

6 −0.3602(40) 1.261 87(21) 0.037 84(5) 2.07
7 −0.3809(68) 1.262 46(26) 0.037 98(6) 1.33
8 −0.395(11) 1.262 80(34) 0.038 05(8) 1.17

10 −0.381(18) 1.262 54(43) 0.038 00(10) 1.06
12 −0.393(32) 1.262 75(62) 0.038 04(14) 1.21
14 −0.405(43) 1.262 89(73) 0.038 07(16) 1.40
16 −0.436(72) 1.263 30(99) 0.038 15(21) 1.32

Table 9. Fits of the magnetic susceptibility atU = 1.243 fixed with the extended ansatz (18).

Lmin c d η χ2/d.o.f.

4 −0.464(4) 1.2651(4) 0.038 45(11) 3.27
6 −0.525(12) 1.2681(6) 0.039 17(16) 0.76
8 −0.526(30) 1.2682(10) 0.039 18(23) 0.85

10 −0.553(55) 1.2688(14) 0.039 31(31) 0.96
12 −0.574(90) 1.2691(18) 0.039 37(40) 1.05
14 −0.47(13) 1.2676(22) 0.039 07(49) 1.17
16 −0.24(23) 1.2649(32) 0.038 51(67) 1.27

also smaller for fixedξ2nd/L than for fixedU .
Because we had to go to largeLmin with the simple ansatz (17) we added an analytic

correction

χ̄ = c + dL2−η. (18)

Note also that corrections that decay likeL−x with x ≈ 2 are effectively parametrized by
this ansatz. Results for fits with this ansatz are given in table 8 for fixedξ2nd/L and for
fixed U in table 9. We see that a smallχ2/d.o.f. is already reached forLmin = 7 and 6,
respectively. Despite the fact that aχ2/d.o.f. of the order of one is reached, the results forη

do not match within statistical errors. This is a reminder that a smallχ2/d.o.f. does not imply
that systematical errors are of the same size as the statistical ones.

Since the statistical error with fixedξ2nd/L is smaller we take our final result from these fits.
In order to estimate systematical errors we compare results of fits with the rangeLmin, Lmax
andL′min = 2Lmin, L′max = 2Lmax . Then the error due toL−2 (which we assume to be
the leading corrections beyondL−ω) corrections in the second interval should be1

3 of the
difference of the two results (up to a difference in the distribution of the data with the interval).
As our final estimate we take the fit result fromLmin = 14 andLmax = 48. For comparison
we fitted withLmin = 7 andLmax = 24. For this interval we getη = 0.038 00(13). Hence
the systematical error fromL−2 corrections should be smaller than 0.000 12 (taking statistical
errors into account).
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Finally, we checked for systematical errors due to residual leading-order corrections to
scaling atλ = 2.0. For this purpose we fitted our data forλ = 1.0 and 4.0, also withLmin = 14
and ansatz (18). We getη = 0.0375(13) and 0.0373(13), respectively. Taking into account
the statistical errors we find that∣∣∣∣ 1ηeff1c1(λ)

∣∣∣∣ < 0.018. (19)

From the previous section we know that the coefficientc1(2.0) should be smaller than
0.007 (taking the fit result forLmin = 16 plus the statistical error). Therefore, the systematical
error in our final estimate ofη due to residual leading-order corrections should be smaller than
0.000 13. As a check we repeated the error analysis using a method similar to [5] and came
up with a comparable estimate.

As a final estimate forη we take the result from fitting the magnetic susceptibility at fixed
ξ2nd/L with ansatz (18) andLmin = 14

η = 0.0381(2)[2]. (20)

The estimate of the systematical error is given in the second bracket. It covers residualL−ω

corrections and higher-order corrections.

4.4. The exponentν

We computed the derivate of the Binder cumulant,U , with respect toκ at the fixed value of
the Binder cumulant,U = 1.243, and at the fixed value ofξ2nd/L = 0.5927. These quantities
behave as

∂U

∂κ
= cL1/ν . (21)

Results of the fits are summarized in tables 10 and 11 for fixedξ2nd/L and for fixedU ,
respectively. Theχ2/d.o.f. becomes of the order of one starting fromLmin = 8 and 7,
respectively. The statistical errors are slightly smaller in the case of fixedU .

As in the case of the exponentη, in addition to the statistical error we expect systematical
errors due to the fact that the coefficient ofL−ω corrections does not vanish exactly and due
to sub-leadingL−2 corrections.

In order to estimate these errors we proceed as in the previous section.
As our final result we take the fit withLmin = 14 andLmax = 48 of ∂U

∂κ
at fixedU . In

order to estimateL−2 corrections we fitted the data in the intervalLmin = 7 andLmax = 24.
For these lattice sizes we obtainν = 0.6712(2). Hence the estimate for aL−2 error is
0.0011(5)/3≈ 0.0005.

Table 10. Fits of ∂U
∂κ

at ξ2nd/L fixed with ansatz (21).

Lmin c/2 ν χ2/d.o.f.

6 −0.5542(5) 0.6709(1) 3.82
7 −0.5565(6) 0.6715(2) 1.76
8 −0.5578(7) 0.6719(2) 1.02

10 −0.5586(9) 0.6721(2) 0.96
12 −0.5595(11) 0.6723(3) 0.80
14 −0.5608(13) 0.6727(4) 0.65
16 −0.5620(18) 0.6729(5) 0.69
20 −0.5610(24) 0.6727(6) 0.63
24 −0.5632(36) 0.6732(9) 0.50
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Table 11. Fits of ∂U
∂κ

at fixedU with ansatz (21).

Lmin c/2 ν χ2/d.o.f.

6 −0.5551(4) 0.6712(1) 2.07
7 −0.5564(5) 0.6716(1) 1.19
8 −0.5572(6) 0.6718(2) 0.80

10 −0.5577(7) 0.6719(2) 0.73
12 −0.5583(9) 0.6721(3) 0.62
14 −0.5593(11) 0.6723(3) 0.51
16 −0.5601(15) 0.6725(4) 0.55
20 −0.5592(21) 0.6723(5) 0.48
24 −0.5610(31) 0.6727(7) 0.30

In order to estimate the error due to residualL−ω corrections we fitted our data forλ = 1.0
and 4.0. FromLmin = 14 we obtainν = 0.6706(11) for λ = 1.0 andν = 0.6758(10) for
λ = 4.0. Hence∣∣∣∣ 1νeff1c1(λ)

∣∣∣∣ < 0.04. (22)

From the previous section we know thatc1(2.0) ≈ 0.007. Therefore, the estimate of the
systematical error inν is 0.04× 0.007≈ 0.0003.

We arrive at our final estimate

ν = 0.6723(3)[8] (23)

where the statistical error is given in the first bracket and the systematical error that is given in
the second bracket coversL−2 and residualL−ω corrections.

5. Comparison with the literature

In table 12 we give, for comparison, recent results for critical exponents. Critical exponents
for theXY -universality class were calculated using the high-temperature series expansions,
theε-expansion, perturbation theory in three dimension and Monte Carlo simulations.

The Monte Carlo simulations [14–17] are performed for the two-componentXY model,
which is theλ = ∞ limit of the model discussed in the present paper. The three-componentXY

model is studied in [18]. In this model the field variable is a three-component unit vector and
the coupling of the third component vanishes. All these Monte Carlo studies use a simple cubic
lattice. The high-temperature series expansion of [20] is performed for the two-component
XY model on the simple cubic and on the body-centred cubic lattice.

Our result forν is consistent, within error bars, with (almost) all other theoretical results
given in table 12. The result of the Monte Carlo study [16] seems to be a little too small in
magnitude. Our error bar is smaller than that of all previous estimates. Our estimate forη is
consistent with the other theoretical estimates except with some of the Monte Carlo results.
The values of [15, 16] are too small compared with our present estimate. Note that in these
studies no careful check of systematical errors due to corrections to scaling was performed.
On the other hand, the result of [14], which takes into accountL−ω corrections, is larger than
our result by two standard deviations.

In contrast to the one-component case [6] our result for the correction to scaling exponent
ω is consistent with that obtained with field theoretic methods.
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Table 12. Recent results for critical exponents obtained with Monte Carlo simulations (MC),
ε-expansion, perturbation theory in three dimensions (3D, PT) and high-temperature (HT) series
expansions. When onlyν andγ are given in the reference we computedη with the scaling law.
These cases are indicated by∗. In [1] a result forα and in [17] a result forα/ν are given. In the
table these results are converted toν using the scaling relationα = 2− dν. For a discussion see
the text.

Reference Method ν η ω

Present work MC 0.672 3(3)[8] 0.0381(2)[2] 0.79(2)
[15] MC 0.670(2) 0.025(7)∗

[16] MC 0.662(7) 0.026(6)
[17] MC 0.672 4(17)
[14] MC 0.672 1(13) 0.042(2)
[18] MC 0.669 3(58) 0.035(5)
[19] 3D, PT 0.670 3(15) 0.0354(25) 0.789(11)
[19] ε, bc 0.668 0(35) 0.0380(50) 0.802(18)
[19] ε, free 0.671 0.0370 0.802(18)
[20] HT 0.674(2) 0.039(7)∗

[1] 4He 0.670 95(13)
[2] 4He 0.670 5(6)
[3] 4He 0.670 8(4)

Experimental results for the exponentν have been obtained for theλ-transition of4He.
These results have smaller error bars than our Monte Carlo result. The experimental results
are all smaller then our value but the error bars still touch.

6. Conclusion and outlook

In this paper we have considerably improved the accuracy of the theoretical estimate ofν

of the 3DXY universality class. In particular, in addition to the statistical error we give a
careful estimate of systematical errors that are caused by corrections to scaling. Our value,
ν = 0.6723(3)[8], is consistent with other theoretical estimates. However, it is larger than
the experimental results obtained from theλ-transition of4He [1–3] that give values from
0.6704 to 0.6709 with an error in the last digit. It would be interesting to further improve the
theoretical estimate to the claimed accuracy of the experimental results. This could be achieved
by simulating at our best estimate forλopt = 2.1 and using linear lattice sizes roughly twice
as large as in the present study to reduce the effect of sub-leading corrections. At a sustained
statistical accuracy this would require about 10 years of CPU-time on a modern PC.

In addition to critical exponents amplitude ratios are universal and have been
experimentally determined for theλ-transition of4He. For example, the specific heat behaves,
in the neighbourhood of the phase transition, as

C = A±|t |−α(1 +D±|t |θ +E±t) +B (24)

wheret = (T − Tc)/Tc is the reduced temperature. The constantsA±,D±,E± andB depend
on the system that is considered. The subscript± indicates the low- and high-temperature
phase. However, renormalization group predicts the ratioA+/A− to be universal. Setting
λ = λopt leads toD± = 0 which greatly simplifies the determination ofA+/A− in a Monte
Carlo simulation. For a Monte Carlo determination ofA+/A− based on theXY model see [17].
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